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Abstract

A key-value container providing caching with a least-recently-
used replacement strategy is a useful tool in any programmer’s
performance optimisation toolkit; however, with no ready-to-use
implementations provided in the standard library or the widely
used boost libraries, C++ developers are likely resort to inefficient
or incorrect approximations to the logic. This document describes a
couple of simple implementations built on top of the C++ standard
library’s map types and on the boost library’s “bimap” types in the
hope of making this useful pattern more accessible to coders not
already familiar with it.
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1 Document history

• May 2012: Minor typo fixed in text.
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• October 2011: Updated for C++0x; added templating to permit use
of both hash-based “unordered” maps and conventional tree-based
maps. Updated performance results.

• September 2011: Bug fixed in std-based code (in operator(), erro-
neous and unnecessary iterator assignment after splice - special
thanks to Marek Fort to drawing this to the author’s attention).

• March 2011: Source code licensing clarified.

• December 2010: Initial version.

2 Source code licensing

While the general aim of this document is to provide its audience with
enough information to implement their own LRU-caching classes, read-
ers are welcome to cut-and-paste the code listings in this document un-
der the terms of the Internet Systems Consortium (ISC) license (an OSI-
approved BSD-alike license). The following text should be considered to
apply to all code in this document, and added as a comment in any code
copied directly from it:
Copyright (c) 2010-2011, Tim Day <timday@timday.com>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Readers simply looking for templated LRU cache code for instant
usage may wish to turn straight to Listing 1 and the comments imme-
diately preceding it.

The sources are also available from a Bitbucket-hosted Mercurial
repository.

3 The problem

The need for caching behaviour sometimes arises during system devel-
opment. Generally the desire is to preserve some expensive-to-obtain
results so they can be reused “for free” without repeating the expensive
operation in future. Typically the expense arises because a complex cal-
culation is needed to obtain the result, or because it must be obtained
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via a time consuming I/O operation. If the total number of such results
dealt with over the lifetime of the system does not consume excessive
memory, it may suffice to store them in a simple key-value container
(for example, a std::map), with the key being the input to the expen-
sive function and the value being the result. This is often referred to as
“memoisation” of a function.

However, for most applications, this approach would quickly con-
sume too much memory to be of any practical value. The memory con-
sumption issue can be addressed by limiting the maximum number of
items stored in the cache or, if the items have a variable size, limiting
the aggregate total stored. Initially the cache is empty and records (key-
value pairs) can be stored in it freely. After some further usage, it will
fill up. Once full, the question arises of what to do with subsequent ad-
ditional records which it seems desirable to cache, but for which there is
no space (given the limited capacity constraint) without taking action to
remove some other records from the store. Assuming the records most
recently added to the cache are those most likely to be accessed again
(ie assuming some temporal coherence in the access sequence), a good
general strategy is to make way for a new record by deleting the record
in the cache which was “least recently used”. This is called an LRU
replacement strategy.

Despite the general utility of a LRU-replacement cache component,
one is not provided as such in C++’s Standard Library or in the well
known Boost libraries. However, it is reasonably easy logic to construct
using either library as a basis.

4 Implementations

The following two sections describe possible implementations, both of
them providing caching up to a limited number of records of a func-
tion with signature V f(K), where K and V are the “key type” and
the “value type”. The only real difference in the API to either imple-
mentation is that the boost-based one passes the cached function as a
boost::function rather than a function pointer, providing slightly
more flexibility through compatibility with boost::bind.

The code presented has been tested on g++ 4.4.5. The -std=c++0x
option is required in order to use the std::unordered map hash-based
map container which appeared with the TR1 additions to the C++ Stan-
dard Library, and variadic template arguments are also used to bypass
some templated-template issues associated with the different type ar-
guments to the tree-based and hash-based container types.

For brevity the code explanations below will generally refer to the
std::map and boost::bimaps::set of versions of the code; however
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both cache implementations work equally well (or better; see subsec-
tion 7.2) with std::unordered map and boost::bimaps::unordered set of
containers and the code presented is fully intended to support both, sub-
ject to the key type supporting the necessary concepts (ordered compar-
ison in the case of std::map and boost::bimaps::set of, hashabil-
ity and equality testing in the case of the unordered variants).

5 Standard Library based LRU-cache

5.1 Design

Users of the C++ Standard Library needing an LRU-replacement cache
generally gravitate towards std::map or std::unordered map, be-
cause of their support for efficient keyed value accesses (O(log n) or O(1)
access complexity). The problem then is how to implement the eviction
strategy.

The most obvious naive solution is to use an
std::map<K,std::pair<timestamp_type,V> >

The timestamp t holds a scalar quantity, the ordering of which in-
dicates when the value was last accessed relative to other values; typ-
ically some sort of incrementing serial number is used rather than an
actual clock-derived time, to ensure a one-to-one mapping from times-
tamps to records. Keys then give efficient access to values and times-
tamps, and timestamps can be updated without the need to adjust the
map’s tree-structure (as this depends entirely on the key values). How-
ever, to determine the minimum timestamp in order to evict a record, it
is necessary to perform a O(n) search over all the records to determine
the oldest one.

As a solution to eviction being expensive, it might be tempting to
implement the cache as a

std::list<std::pair<K,V> >

Moving any item accessed to the tail of the list (a cheap operation for
lists), ensures the least-recently-used item can trivially be obtained (for
erasure) at the list head by begin(). However, this just moves the
problem elsewhere as it is now necessary to resort to an O(n) search
simply to look up a key in the cache.

While either naive solution can be got to work (and may well be
a simple pragmatic solution to caching a few tens of items) certainly
neither can be considered scalable or efficient due to the O(n) behaviour
associated with either identifying eviction targets or accessing values
by key.

However, it is possible to implement an LRU-replacement cache with
efficient eviction and access using a pair of maps:
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typedef std::map<timestamp_type,K> timestamp_to_key_type;
typedef std::map<

K,
std::pair<V,timestamp_type>

> key_to_value_type;

On accessing key to value by a key, we obtain access to both the value
required and the timestamp, which can be updated in both the accessed
record and, by lookup, timestamp to key. When an eviction is re-
quired, the lowest timestamp in timestamp to key provides the key
to the record which must be erased.

However, this can actually be optimised slightly:
typedef std::map<timestamp_type,K> timestamp_to_key_type;
typedef std::map<

K,
std::pair<V,timestamp_to_key_type::iterator>

> key_to_value_type;

This has the slight advantage that updating the timestamp on a record
access avoids an keyed lookup into timestamp to key, replacing it
with a (presumably more efficient) direct iterator access.

Pedants will observe that further slight improvement would also
have the timestamp to key type map’s value be an iterator into the
key to value type but this introduces a circular type definition. It
might be tempting to try to break the dependency by using void* in
place of the iterator, but iterators cannot portably be cast to pointers. In
any case, the first iterator optimisation mentioned benefits the updat-
ing of timestamps needed during cache hits whereas this second iterator
optimisation benefits the eviction associated with cache misses. Since in
a well functioning cached system cache hits should be far more common
than misses, this second optimisation is likely of much less value than
the first. Another consideration is that whatever expensive operation
is required to generate a new result following a cache miss is likely to
be hugely more expensive than any keyed access. Therefore this second
optimisation is not considered further.

In fact there is one final powerful optimisation possible. The only
operations actually done on timestamp to key are to access its head
(lowest timestamp, least recently used) element, or to move elements to
the (most recently used) tail. Therefore it can be replaced by a std::list;
this also eliminates the need for any actual instances of timestamp type
(and therefore any concerns about the timestamp possibly overflowing).
In previous testing the author has found list-and-map implementations
to be almost twice as fast as a version (not shown) using a pair of maps.

Finally, before showing the complete implementation, there is one
other detail to consider: it would seem to be desirable to template the
cache class code on the underlying container type used (std::map or
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std::unordered map) rather than provide two completely separate
implementations which actually only differ in minor details. This is
slightly complicated by the different type argument signatures of the
container types own templates (providing the optional capability to over-
ride default comparator or hasher/equality predicate logic as appropri-
ate), but a simple workround is to declare the map type as templated on
variadic type arguments template<typename...> class MAP and
then the actual container instance required can simply be instantiated
on the necessary key and value types. Generalising the code to sup-
port overriding of the default comparator (or the unordered map type
equivalent) or allocators is left as an exercise for the reader.

5.2 Implementation

See Listing 1 for a complete example using the pair of containers

typedef std::list<K> key_tracker_type;
typedef MAP<

K,std::pair<V,typename key_tracker_type::iterator>
> key_to_value_type;

where MAP is expected to be one of std::map or std::unordered map;
for example an LRU cache from std::string to std::string using
hashing would be declared as

lru_cache_using_std<std::string,std::string,std::
unordered_map>

while an int-keyed cache of Foo objects using the “classic” std::map
would be declared as

lru_cache_using_std<int,std::shared_ptr<Foo>,std::map>

Note that use of a reference counted smart-pointer for heap-allocated
value types is strongly advised as the very nature of caches easily leads
to situations where value object ownership must be considered shared
between the cache and a client which has retrieved the value from the
cache.

Listing 1: lru cache using std.h

#ifndef _lru_cache_using_std_
#define _lru_cache_using_std_

#include <cassert>
#include <list>

// Class providing fixed-size (by number of records)
// LRU-replacement cache of a function with signature
// V f(K).
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// MAP should be one of std::map or std::unordered_map.
// Variadic template args used to deal with the
// different type argument signatures of those
// containers; the default comparator/hash/allocator
// will be used.
template <
typename K,
typename V,
template<typename...> class MAP
> class lru_cache_using_std

{
public:

typedef K key_type;
typedef V value_type;

// Key access history, most recent at back
typedef std::list<key_type> key_tracker_type;

// Key to value and key history iterator
typedef MAP<

key_type,
std::pair<

value_type,
typename key_tracker_type::iterator
>

> key_to_value_type;

// Constuctor specifies the cached function and
// the maximum number of records to be stored
lru_cache_using_std(

value_type (*f)(const key_type&),
size_t c

)
:_fn(f)
,_capacity(c)

{
assert(_capacity!=0);

}

// Obtain value of the cached function for k
value_type operator()(const key_type& k) {

// Attempt to find existing record
const typename key_to_value_type::iterator it

=_key_to_value.find(k);

if (it==_key_to_value.end()) {
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// We don’t have it:

// Evaluate function and create new record
const value_type v=_fn(k);
insert(k,v);

// Return the freshly computed value
return v;

} else {

// We do have it:

// Update access record by moving
// accessed key to back of list
_key_tracker.splice(

_key_tracker.end(),
_key_tracker,
(*it).second.second

);

// Return the retrieved value
return (*it).second.first;

}
}

// Obtain the cached keys, most recently used element
// at head, least recently used at tail.
// This method is provided purely to support testing.
template <typename IT> void get_keys(IT dst) const {

typename key_tracker_type::const_reverse_iterator src
=_key_tracker.rbegin();

while (src!=_key_tracker.rend()) {

*dst++ = *src++;
}

}

private:

// Record a fresh key-value pair in the cache
void insert(const key_type& k,const value_type& v) {

// Method is only called on cache misses
assert(_key_to_value.find(k)==_key_to_value.end());

// Make space if necessary
if (_key_to_value.size()==_capacity)

evict();

8



// Record k as most-recently-used key
typename key_tracker_type::iterator it

=_key_tracker.insert(_key_tracker.end(),k);

// Create the key-value entry,
// linked to the usage record.
_key_to_value.insert(

std::make_pair(
k,
std::make_pair(v,it)

)
);
// No need to check return,
// given previous assert.

}

// Purge the least-recently-used element in the cache
void evict() {

// Assert method is never called when cache is empty
assert(!_key_tracker.empty());

// Identify least recently used key
const typename key_to_value_type::iterator it

=_key_to_value.find(_key_tracker.front());
assert(it!=_key_to_value.end());

// Erase both elements to completely purge record
_key_to_value.erase(it);
_key_tracker.pop_front();

}

// The function to be cached
value_type (*_fn)(const key_type&);

// Maximum number of key-value pairs to be retained
const size_t _capacity;

// Key access history
key_tracker_type _key_tracker;

// Key-to-value lookup
key_to_value_type _key_to_value;

};

#endif

Readers interested in the performance impact of choosing std::map
vs. std::unordered map will find some results in subsection 7.2.
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6 Boost bimap-based LRU-cache

6.1 Design

Assuming usage of the boost C++ libraries is an option, boost::bimap
provides an excellent basis on which to construct LRU-replacement cache
logic. Unlike the better known std::map, which has an asymmet-
ric relation between key and value (that is, a key can index a value
but a value can’t index a key), boost::bimap supports a bidirectional
mapping between a pair of keys. This is very convenient for indexing
a cache’s collection using either the cached-function argument key or
the key-access history as required, and much of the complication of the
standard-library version described in section 5 can be avoided.

As with the standard library based implementation above, it is not
actually necessary to record timestamps explicitly and it suffices for the
access-history view of the bimap to be a list of, which can maintain
the ordering of keys accessed. By default bimap inserts new records at
the tail of the list view, and records can be efficiently relocated there on
access.

There are several ways in which the boost::bimap container to be
used might be instantiated. The most obvious one is

typedef boost::bimaps::bimap<
boost::bimaps::set_of<K>,
boost::bimaps::list_of<V>

> container_type;

with the left view providing the key-to-value semantics, and the order-
ing on the right view used to maintain a record of the key-value-pair
access history. Replacing the set of with unordered set of to use
hashing instead of trees is another choice.

However, there also exists the possibility of declaring

typedef boost::bimaps::bimap<
boost::bimaps::set_of<K>,
boost::bimaps::list_of<dummy_type>,
boost::bimaps::with_info<V>

> container_type;

with the cached value stored using bimap’s support for “additional infor-
mation” and dummy type never storing a meaningful value. In the past
the author has found some peculiar performance differences between
implementations using a with info version of the container and those
without, but this seems to no longer be the case so only the simpler
version without with info is considered further here.
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6.2 Implementation

See Listing 2 for a complete implementation. This is similar to the stan-
dard library-based version in that it is templated on the key view tem-
plate to be used which is expected be one of boost::bimaps::set of
or boost::bimaps::unordered set of. For example an LRU cache
from std::string to std::string using hashing would be declared
as

lru_cache_using_boost<std::string,std::string,boost::
bimaps::unordered_set_of>

Listing 2: lru cache using boost.h

#ifndef _lru_cache_using_boost_
#define _lru_cache_using_boost_

#include <boost/bimap.hpp>
#include <boost/bimap/list_of.hpp>
#include <boost/bimap/set_of.hpp>
#include <boost/function.hpp>
#include <cassert>

// Class providing fixed-size (by number of records)
// LRU-replacement cache of a function with signature
// V f(K).
// SET is expected to be one of boost::bimaps::set_of
// or boost::bimaps::unordered_set_of
template <
typename K,
typename V,
template <typename...> class SET
> class lru_cache_using_boost

{
public:

typedef K key_type;
typedef V value_type;

typedef boost::bimaps::bimap<
SET<key_type>,
boost::bimaps::list_of<value_type>
> container_type;

// Constuctor specifies the cached function and
// the maximum number of records to be stored.
lru_cache_using_boost(

const boost::function<value_type(const key_type&)>& f,
size_t c
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)
:_fn(f)
,_capacity(c)

{
assert(_capacity!=0);

}

// Obtain value of the cached function for k
value_type operator()(const key_type& k) {

// Attempt to find existing record
const typename container_type::left_iterator it

=_container.left.find(k);

if (it==_container.left.end()) {

// We don’t have it:

// Evaluate function and create new record
const value_type v=_fn(k);
insert(k,v);

// Return the freshly computed value
return v;

} else {

// We do have it:

// Update the access record view.
_container.right.relocate(

_container.right.end(),
_container.project_right(it)

);

// Return the retrieved value
return it->second;

}
}

// Obtain the cached keys, most recently used element
// at head, least recently used at tail.
// This method is provided purely to support testing.
template <typename IT> void get_keys(IT dst) const {

typename container_type::right_const_reverse_iterator
src
=_container.right.rbegin();

while (src!=_container.right.rend()) {

*dst++=(*src++).second;
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}
}

private:

void insert(const key_type& k,const value_type& v) {

assert(_container.size()<=_capacity);

// If necessary, make space
if (_container.size()==_capacity) {

// by purging the least-recently-used element
_container.right.erase(_container.right.begin());

}

// Create a new record from the key and the value
// bimap’s list_view defaults to inserting this at
// the list tail (considered most-recently-used).
_container.insert(

typename container_type::value_type(k,v)
);

}

const boost::function<value_type(const key_type&)> _fn;
const size_t _capacity;
container_type _container;

};

#endif

See subsection 7.2 for some comparative performance testing be-
tween the tree and hash based versions, and between bimap-based caches
and conventional standard library map based caches.

7 Testing

Both test codes below make use of the header Listing 3 which brings
together both standard library and boost bimap based implementations
and defines some helper types. This permits, for example

lru_cache_using_boost<std::string,std::string,boost::
bimaps::unordered_set_of>

to be written

lru_cache_using_boost_unordered_set<std::string,std::
string>::type

Listing 3: lru cache.h
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#ifndef _lru_cache_h_
#define _lru_cache_h_

// Bring all the necessary includes together,
// and define some type helpers.

#include <map>
#include <unordered_map>
#include "lru_cache_using_std.h"

#include <boost/bimap/set_of.hpp>
#include <boost/bimap/unordered_set_of.hpp>
#include "lru_cache_using_boost.h"

// See http://www.gotw.ca/gotw/079.htm for why we can’t
// just use a templated typedef.

template <typename K,typename V> struct
lru_cache_using_std_map {

typedef lru_cache_using_std<K,V,std::map> type;
};

template <typename K,typename V> struct
lru_cache_using_std_unordered_map {

typedef lru_cache_using_std<K,V,std::unordered_map> type;
};

template <typename K,typename V> struct
lru_cache_using_boost_set {

typedef lru_cache_using_boost<K,V,boost::bimaps::set_of>
type;

};

template <typename K,typename V> struct
lru_cache_using_boost_unordered_set {

typedef lru_cache_using_boost<K,V,boost::bimaps::
unordered_set_of> type;

};

#endif

7.1 Unit test

Listing 4 contains templated boost::test code to exercise all four
cache implementations and check basic behaviour is as expected.

Listing 4: lru test.cpp

#define BOOST_TEST_DYN_LINK
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#define BOOST_TEST_MODULE lru_test

#include <iostream>
#include <string>
#include <vector>

#include <boost/test/unit_test.hpp>
#include <boost/test/test_case_template.hpp>
#include <boost/mpl/list.hpp>

#include "lru_cache.h"

namespace {size_t count_evaluations=0;}

// Dummy function we want to cache
std::string fn(const std::string& s)
{
++count_evaluations;
std::string r;
std::copy(s.rbegin(),s.rend(),std::back_inserter(r));
return r;

}

typedef boost::mpl::list<
lru_cache_using_std_map<std::string,std::string>::type,
lru_cache_using_std_unordered_map<std::string,std::string

>::type,
lru_cache_using_boost_set<std::string,std::string>::type,
lru_cache_using_boost_unordered_set<std::string,std::

string>::type
> test_types;

BOOST_AUTO_TEST_CASE_TEMPLATE
(

lru_test,
CACHE,
test_types

)
{

count_evaluations=0;

CACHE lru(fn,5);

// Some initial accesses to prime state
BOOST_CHECK_EQUAL(lru("first"),"tsrif");
BOOST_CHECK_EQUAL(lru("second"),"dnoces");
BOOST_CHECK_EQUAL(lru("third"),"driht");
BOOST_CHECK_EQUAL(lru("fourth"),"htruof");
BOOST_CHECK_EQUAL(lru("fifth"),"htfif");
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BOOST_CHECK_EQUAL(count_evaluations,5);
BOOST_CHECK_EQUAL(lru("sixth"),"htxis");
BOOST_CHECK_EQUAL(count_evaluations,6);

// This should be retrieved from cache
BOOST_CHECK_EQUAL(lru("second"),"dnoces");
BOOST_CHECK_EQUAL(count_evaluations,6);

// This will have been evicted
BOOST_CHECK_EQUAL(lru("first"),"tsrif");
BOOST_CHECK_EQUAL(count_evaluations,7);

// Cache contents by access time
// (most recent to least recent)
// should now be:
// first,second,sixth,fifth,fourth
{

std::vector<std::string> expected;
expected.push_back("first");
expected.push_back("second");
expected.push_back("sixth");
expected.push_back("fifth");
expected.push_back("fourth");
std::vector<std::string> actual;
lru.get_keys(std::back_inserter(actual));
BOOST_CHECK(actual==expected);

}

// So check fourth is retrieved
BOOST_CHECK_EQUAL(lru("fourth"),"htruof");
BOOST_CHECK_EQUAL(count_evaluations,7);

// That will have moved up "fourth" to the head
// so this will evict fifth
BOOST_CHECK_EQUAL(lru("seventh"),"htneves");
BOOST_CHECK_EQUAL(count_evaluations,8);

// Check fifth was evicted as expected
BOOST_CHECK_EQUAL(lru("fifth"),"htfif");
BOOST_CHECK_EQUAL(count_evaluations,9);

}

7.2 Performance testing

Listing 5 contains test code to examine the performance of all four cache
implementations. It makes use of a timer utility class which is provided
in Listing 6 (NB this makes use of the TR1 “chrono” addition to the
standard library).
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In order to test only pure cache performance, a trivial operation is
used for the cached function. The code tests a 1024 element capacity
cache with a series of random accesses over a smaller or larger range.
When the the load is less than or equal to 100%, accesses are guaran-
teed to find a record already in the cache, and the performance reflects
the cost of simply finding it and updating the access timestamp. When
the load is over 100%, the excess determines the expected proportion of
accesses which will result in cache misses; these have a higher cost as
deletion of a previous record and creation of a new one is required and
this is more complex than simply adjusting a timestamp. Hence in the
112.5% load test, one in nine accesses are expected to be a miss, and in
the 200% load case, on average half of all accesses should miss.

Two key-value types are tested:

• int to int: Random keys over the full integer range, with the
cached function simply being the identity.

• std::wstring to int: Random 256 character strings (of wchar t),
with the cached function simply being the string length.

Table 1 and Table 2 shows performance results obtained on a 2.66GHz
Intel Q9450 Core2 running Debian Squeeze (32bit) when compiled with

g++ -std=c++0x -march=native -O3 -DNDEBUG -o lru_perf
lru_perf.cpp -lboost_unit_test_framework

Software versions are g++ 4.4.5, boost 1.42.

Table 1: int-to-int cache performance test results (Mega-accesses per
second)

Cache Standard Library boost bimap
load container type key view type

map unordered map set of unordered set of
50% 14.4 41.8 13.4 36.3

87.5% 11.6 35.1 11.9 34.4
100% 11.6 34.4 11.9 34.8

112.5% 7.78 17.2 8.91 23.2
200% 3.72 7.53 4.87 11.6

The main conclusions which can be drawn from these results are:

• Performance differences between hash-based and tree-based con-
tainers can be significant. This should hardly be surprising given
the different algorithmic complexity (O(log n) vs. O(1)) of key lookup.

• The string-key results demonstrate that hash based caches are
not automatically better. In fact this test case was constructed to
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Table 2: 256-character std::wstring-to-int cache performance test re-
sults (Mega-accesses per second)

Cache Standard Library boost bimap
load container type key view type

map unordered map set of unordered set of
50% 1.66 0.515 1.56 1.1

87.5% 1.58 0.515 1.49 1.09
100% 1.57 0.513 1.49 1.09

112.5% 1.4 0.422 1.49 1.02
200% 0.996 0.261 1.48 0.815

probe the “cross over point” at which a tree-based container be-
comes more efficient than caching; for shorter string lengths the
balance shifts back in favour of hashing.

• Performance differences between the boost and standard library
based implementations are not so simple to declare one or the
other as obviously superior. It might be possible to make the
generalisation that the standard library based performs better
when lightly loaded (few cache misses) while the boost implemen-
tation performs better under heavy load (high proportion of cache
misses), but this is not actually true over all results obtained.

Of course these results should not be taken as a substitute for readers
carrying out performance testing on their own systems using realistic
test cases relevant to their own usage.

Listing 5: lru perf.cpp

#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE lru_perf

#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/test_case_template.hpp>
#include <boost/mpl/list.hpp>
#include <boost/random.hpp>
#include <iostream>
#include <set>
#include <vector>

#include "lru_cache.h"
#include "scoped_timer.h"

// Random number source for generating test data
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boost::mt19937 rng(/*seed=*/23);
boost::random_number_generator<

boost::mt19937,size_t
> rnd(rng);

// Functions to create collections of test keys

// General pattern
template <typename K> std::vector<K> make_keys(size_t);

// Integer specialization:
// generate n unique integer keys
template <> std::vector<int> make_keys<int>(size_t n)
{

std::set<int> r;
do {

r.insert(static_cast<int>(rng()));
} while (r.size()<n);
return std::vector<int>(r.begin(),r.end());

}

// String specialization:
// generate n unique long strings
template <> std::vector<std::wstring> make_keys<std::

wstring>(size_t n)
{

// Sufficiently long key lengths favour comparator
// based containers over hashed
const size_t keylength=256;

std::set<std::wstring> r;
do {

std::wstring s;
for (size_t i=0;i<keylength;++i)

s+=static_cast<wchar_t>(1+rnd(65535));
r.insert(s);

} while(r.size()<n);
return std::vector<std::wstring>(r.begin(),r.end());

}

// Extract relevant part of __PRETTY_FUNCTION__ text
std::string shrink_pretty_function_text(

const std::string& s
) {

std::string r;
int c=0;
for (size_t i=s.find("=")+2;i<s.size()-1;++i) {

if (c<=1) r+=s[i];
if (s[i]==’<’) ++c;
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if (s[i]==’>’) {if (c==2) r+="...>";--c;}
}
return r;

}

// Test the cache object (capacity n) with k keys
// and a accesses. Benchmark adapts to CACHE::key_type,
// but expects an int-like CACHE::value_type
template <typename CACHE> void benchmark(
CACHE& lru,
size_t n,
size_t k,
size_t a

) {

typedef typename CACHE::key_type key_type;

// The set of m keys to be used for testing
std::vector<key_type> keys=make_keys<key_type>(k);

// Create a random access sequence plus some "primer"
std::vector<key_type> seq;
for (size_t i=0;i<a+n;++i)

seq.push_back(keys[i%k]);
std::random_shuffle(seq.begin(),seq.end(),rnd);

// Prime the cache so timed results reflect
// "steady state", not ramp-up period.
for (size_t i=0;i<n;++i)

lru(seq[i]);

// Setup timing
scoped_timer timer(

boost::str(
boost::format("%1% load %|2$4.1f|%%")
% shrink_pretty_function_text(__PRETTY_FUNCTION__)
% (k*100.0/n)

),
"Maccesses",
a/static_cast<float>(1<<20)

);

// Run the access sequence
int t=0;
for (

typename std::vector<key_type>::const_iterator it=
seq.begin()+n;

it!=seq.end();
++it
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)
t+=lru(*it);

// Avoid "optimised away"
volatile int force=0;
force=t;

}

// Classes we want to test
typedef boost::mpl::list<

lru_cache_using_std_map<int,int>::type,
lru_cache_using_std_unordered_map<int,int>::type,
lru_cache_using_boost_set<int,int>::type,
lru_cache_using_boost_unordered_set<int,int>::type,

lru_cache_using_std_map<std::wstring,int>::type,
lru_cache_using_std_unordered_map<std::wstring,int>::type

,
lru_cache_using_boost_set<std::wstring,int>::type,
lru_cache_using_boost_unordered_set<std::wstring,int>::

type
> test_types;

// Some lightweight functions to cache
// for the key types of interest

template <typename K> int fn(const K&);

template <> int fn<int>(const int& x) {
return x;

}

template <> int fn<std::wstring>(const std::wstring& x) {
return x.size();

}

BOOST_AUTO_TEST_CASE_TEMPLATE
(

lru_perf,
CACHE,
test_types

) {
const size_t n=1024;

CACHE lru(fn<typename CACHE::key_type>,n);

// Test a variety of cache load levels
benchmark(lru,n,n/2 ,1024*n);
benchmark(lru,n,(7*n)/8,1024*n);
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benchmark(lru,n,n ,1024*n);
benchmark(lru,n,(9*n)/8,1024*n);
benchmark(lru,n,2*n ,1024*n);
std::cout << std::endl;

}

8 Variations

There are numerous ways in which basic caching behaviour can be ex-
tended. Here are a few suggestions.

8.1 Definition of “capacity”

In many applications for caches, it is required to define the cache ca-
pacity not simply as a maximum number of cached elements, but rather
in terms of the total of some measure on the elements. For example,
a utility for browsing a collection of image files might include a cache
of loaded raster images keyed by filename so as to avoid re-loading the
most recently viewed images if the user revisits them. A cache which
simply stored a fixed number of images would not have very predictable
(ie bounded) memory consumption due to the enormous variation in im-
age sizes which could be encountered. However, by taking the size-in-
bytes of the stored images into account, the maximum total memory
consumed by cached objects could be controlled and the number of im-
ages cached automatically adjusted in response to the aggregate size.

Implementation of such a cache is left as an exercise for the reader.
Hint: It will be necessary to provide some mechanism (another function
object?) for determining the capacity consumed by each stored record,
to track the aggregate total currently cached, and to call the evict()
method within a loop to possibly free up multiple elements in order to
make sufficient space for insertion of a single large elements.

8.2 Thread safety

It should be obvious how to trivially make a cache implementation thread-
safe by addition of a suitable mutex as a member and locking it for the
scope of the access operation. Bear in mind that caches can easily be-
come a serialisation bottleneck because, unlike simpler containers with
no state mutated on read, multiple readers cannot simply ignore each
other as even a cache-hitting read access must update the access record.
Possibly some benefit might be gained from using an upgradeable lock
to limit the time for which exclusive access is required to the minimum.
For cache hits, exclusivity can be limited to the access history update,
but for cache misses the situation is more complicated because several
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non-exclusive threads could cache miss the same key simultaneously
and it is probably desirable for the exclusive-scope code to handle this
case efficiently and ideally only compute the corresponding value once.

In some cases the best solution might be for multiple threads to each
maintain their own independent cache: the inefficiency introduced by
duplication of some cache-miss calculations must be weighed against
the overheads introduced by sharing a cache between multiple threads.

8.3 Compressed stored values

Depending on the nature of the stored result values in the cache, it may
be possible to reduce the amount of memory used by the cache (or, more
usefully, cache more records in the same amount of memory) by com-
pressing the result values. Storing a value in the cache will incur a
compression overhead, and retrieving each value will require a decom-
pression, but if the costs of these is small compared with the original
operation required to obtain the value then it may be worth the expense
to obtain an overall improvement in system performance through a bet-
ter cache hit rate.

A further refinement might be two levels of caching; one holding
compressed values, and a smaller one holding the most recent decom-
pressed values in anticipation of near-term reuse.

See also boost::flyweight, which may be of use as a cache-size
reducer in situations where many records in the cache actually hold the
same value (this would imply the cached function is “many-to-one” in
character).

8.4 Alternative strategies to LRU

For some specialist use cases, alternative strategies might be appro-
priate. For example, a most-recently-used (MRU) replacement strat-
egy evicts the record most recently added to the cache; this might be
relevant where cached results generated earliest in the lifetime of a
program are most likely to be reused, or it can be a useful strategy to
switch to in cases where a program repeatedly loops over a sequence of
records slightly too large for the cache to store fully. Alternatively, a
cache might have access to additional information (a so-called “clairvoy-
ant algorithm”) which predicts the cached values to be used in future
and thereby be able to select records for eviction so as to minimise the
amount of recalculation subsequently needing to be done.
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8.5 Pooling

Consider a fully populated cache, which should be considered to be the
normal state for caches after they have been in existence for some time.
Cache misses result in the deletion of an evicted stored result value,
followed by the immediate creation of a new one. If the value type is
particularly expensive to create there may be a potential optimisation
in recycling evicted values through a simple object pool for more efficient
reuse.

A Timer utility class

Listing 6 contains the timer utility class used by the performance test-
ing code in Listing 5.

Listing 6: scoped timer.h

#ifndef _scoped_timer_h_
#define _scoped_timer_h_

#include <boost/noncopyable.hpp>
#include <chrono>
#include <iostream>

// Utility class for timing and logging rates
// (ie "things-per-second").
// NB _any_ destructor invokation (including early return
// from a function or exception throw) will trigger an
// output which will assume that whatever is being measured
// has completed successfully and fully.
class scoped_timer : boost::noncopyable
{
public:

typedef std::chrono::high_resolution_clock clock_type;

scoped_timer(
const std::string& what,
const std::string& units,
double n

)
:_what(what)
,_units(units)
,_how_many(n)
,_start(clock_type::now())

{}

˜scoped_timer() {
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clock_type::time_point stop=clock_type::now();
const double t=

1e-9*std::chrono::duration_cast<
std::chrono::nanoseconds

>(stop-_start).count();
std::cout << (

boost::format(
"%1%: %|2$-5.3g| %|3$|/s (%|4$-5.3g|s)"

) % _what % (_how_many/t) % _units % t
) << std::endl;

}

private:

const std::string _what;
const std::string _units;
const double _how_many;
const clock_type::time_point _start;

};

#endif
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